University of Jordan School of Engineering Electrical Engineering Department ### EE 204 Electrical Engineering Lab ## EXPERIMENT 3 REPORT & PRE-LAB NETWORK THEOREMS | | Section # | _ Group # | | |----|---|-----------|----| | | Student Name | | ID | | 1. | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | | | | 2. | | | | | 3. | | | | | 4. | | | | ### EXPERIMENT 3 NETWORK THEOREMS #### PROCEDURE A - SUPERPOSITION THEOREM | circuit: I_1 , | I_2 , I_3 , and | the voltage | | ll resistors | s: V_{R1} , V_{R2} , | V_{R3} , V_{R4} . I | Record thes | ents in the
se values in | |---|--------------------------|---|--------------------------|---------------------------------------|--|---|-------------|---| | voltages a | across all 1 | resistors: \ | | V_{R3} , V_{R4} . Re | ecord thes | e values i | | | | | | | | Table 1 | | | | | | | Vs & Vd | in circuit | Vs only i | in circuit | Vd only | in circuit | column 2+ | -column 3 | | | Theory | Meas. | Theory | Meas. | Theory | Meas. | Theory | Meas. | | I ₁ (mA) | | | | | | | | | | I ₂ (mA) | | | | | | | | | | I ₃ (mA) | | | | | | | | | | V _{R1} (V) | | | | | | | | | | V _{R2} (V) | | | | | | | | | | V _{R3} (V) | | | | | | | | | | $V_{R4}(V)$ | | | | | | | | | | contribution sources were sources were sources. 9. Compare | ons (last coere active (| olumn in Tournell of the column of Vs and | able 1) with an in Table | h the volta 1). What a ibutions to | ige and cui
ire your co

o power (l | rrent value
nclusions?
ast columi | s found wh | e sum of the nen the two 2) with the at are your | | 10. Is pow | er a linear | quantity o | r non-linea | r quantity | ? Why is th | nis significa | ant? | | Table 2 | | Vs & Vd in circuit | | Vs only in circuit | | Vd only in circuit | | column 2+column 3 | | |----------------------|--------------------|-------|--------------------|-------|--------------------|-------|-------------------|-------| | | Theory | Meas. | Theory | Meas. | Theory | Meas. | Theory | Meas. | | P _{R1} (mW) | | | | | | | | | | P _{R2} (mW) | | | | | | | | | | P _{R3} (mW) | | | | | | | | | | P _{R4} (mW) | | | | | | | | | | P _{Vs} (mW) | | | | | | | | | | P _{Vd} (mW) | | | | | | | | | ### PROCEDURE C - MAXIMUM POWER TRANSFER #### Table 4 | Potentiometer | $\mathbf{V}_{\mathbf{l}}$ | P (V) | P (mW) | | | |----------------|---------------------------|----------|--------|----------|--| | Resistance (Ω) | Theory | Measured | Theory | Measured | | | 220 Ω | | | | | | | 441 Ω | | | | | | | 661 Ω | | | | | | | 881 Ω | | | | | | | 1322 Ω | | | | | | | 1762 Ω | | | | | | | 2203 Ω | <u> </u> | | | | | | 2203 Ω | | | | | |---------------------------|--------------------------|-----------------------|--|----------------------| | 6. Why can't you circuit? | just measure the p | otentiometer resista | ance while it is stil | l connected to the | | 7. Plot the absorbe | ed power <i>P</i> versus | potentiometer resis | tance (provide hand | written plots on the | | power transfer? | , | oort). At what resist | , and the second | observe maximum | | | | | | | | 8. What is so speci- | al about the above r | esistance value? Hi | nt: review procedur | ъ В. | | | | | | | | CONCLUSIONS | | | | | | Summarize in clea | r but concise forma | t what you learned | from this experimer | nt: |
 |
 | |------|------| |
 |
 |