Electrical Circuits Lab. 0903219

Parallel RLC Resonance Circuit

- Parallel RLC Circuit Resonance Frequency fr:

* The definition of the resonance frequency fr is that it is the operating frequency that makes an **RLC** circuit a resistive circuit which means the imaginary part of the total impedance **Z** (or the total admittance **Y**) becomes zero.

Figure (1) Parallel RLC circuit

* Depending on the above, we can find a formula for *fr* by following the steps shown below:

When
$$f = fr$$
 in a Parallel RLC circuit,

$$Im\{Y\} = 0$$
 $Im\{\frac{1}{R} + j\omega_r C + \frac{1}{j\omega_r L}\} = 0$
 $j\omega_r C + \frac{1}{j\omega_r L} = 0$
 $\Rightarrow j\omega_r C = \frac{-1}{j\omega_r L} \Rightarrow \omega_r^2 = \frac{1}{LC}$
 $\Rightarrow \omega_r = \frac{1}{\sqrt{LC}} \Rightarrow fr = \frac{1}{2\pi\sqrt{LC}}$

* Figure (2) shows important plot of how capacitor impedance \mathbf{X}_{C} and inductor impedance \mathbf{X}_{L} change with frequency and the place of \mathbf{fr} on the plot (in this case when \mathbf{X}_{C} equal \mathbf{X}_{L}).

Figure (2) Frequency Response Curves for X_C and X_L reactance.

- Simple steps to draw phasor diagram of a parallel RLC circuit without memorizing! and important conclusions:

* Start with the quantity (voltage or current) that is common for resistor \mathbf{R} , capacitor \mathbf{C} , and inductor \mathbf{L} , which is here the source voltage $\mathbf{V_S}$ (because it is parallel with all of them without being divided).

Stepl

* Now, we know that V_S and resistor current I_R are in phase or have the same phase angle (also in time domain we see that there zero crossings are the same on the time axis) and V_S is greater than I_R in magnitude.

Step2

* Since V_S equal capacitor voltage V_C and equal inductor voltage V_L , and we know that capacitor current I_C leads V_C by 90 degrees and inductor current I_L lags V_L by 90 degrees, both I_L and I_C will be on the imaginary axis, and the phasor diagram of a parallel RLC circuit will have three cases depending on the source operating frequency f:

a- Case 1: f = fr

As mentioned before when $f = fr \ \underline{X_L = X_C}$ so $\underline{I_L = I_C}$ and they are equal in magnitude and out of phase so $\underline{I_C}$ and $\underline{I_L}$ will cancel each other's effect and the circuit becomes a resistive circuit and the phase shift $\underline{\Theta}$ equal zero (remember that $\Theta = \overset{\checkmark}{\rightarrow} \underline{I} = \overset{\checkmark}{\rightarrow} \underline{Y}$), the value of current \underline{I} is minimum and equals $\underline{V_S/R}$ and impedance \underline{Z} is maximum and equal \underline{R} .

Figure (3) Parallel RLC Circuit Phasor Diagram when f = fr

b- Case 2: *f* < *fr*

Referring to Figure (2) notice that when f < fr $X_L < X_C$ so $I_L > I_C$ and the circuit becomes an inductive circuit, which means that I lags V_S and Θ is a negative angle (with respect to V_S).

From its phasor diagram in figure (4) we can conclude the following:

$$I_C$$
 I_R
 V_S
 $I_{L} - I_{C}$
 I_L

Figure (4) Parallel RLC Circuit Phasor Diagram when f < fr

1-
$$|V_S| = \sqrt{(|I_L| - |I_C|)^2 + |I_R|^2}$$

$$2-\theta = \tan^{-1} \frac{|I_L| - |I_C| \ (imaginary \ part \ of \ I)}{I_R \ (real \ part \ of \ I)}$$

and remember that
$$\theta = \stackrel{\wedge}{\rightarrow} \mathbf{I} = \stackrel{\wedge}{\rightarrow} \mathbf{Y} = \tan^{-1} \frac{B_C - B_L \text{ (imaginary part of Y)}}{R \text{ (real part of Y)}}$$

3- $|I_L|$ and $|I_C|$ can exceed the source current $|\ I\ |$ but $|I_L|$ - $|I_C|$ and $|I_R|$ cannot.

c- Case
$$3: f > fr$$

Referring to Figure (2) notice that when f > fr $\underline{X}_{\underline{C}} \leq \underline{X}_{\underline{L}}$ so $\underline{I}_{\underline{C}} \geq \underline{I}_{\underline{L}}$ and the circuit becomes a <u>capacitive circuit</u>, which means that \underline{I} <u>leads</u> $\underline{V}_{\underline{S}}$ and $\underline{\Theta}$ is a positive angle (with respect to $\underline{V}_{\underline{S}}$).

From its phasor diagram in figure (5) we can conclude the following:

1-
$$|V_S| = \sqrt{(|I_C| - |I_L|)^2 + |I_R|^2}$$

2-
$$\theta = \tan^{-1} \frac{|I_C| - |I_L| \ (imaginary \ part \ of \ V_S)}{I_R \ (real \ part \ of \ V_S)}$$

Figure (5) Parallel RLC Circuit Phasor Diagram when f > fr

and remember that $\theta = \stackrel{\triangle}{\mathbf{I}} = \stackrel{\triangle}{\mathbf{Y}} = \tan^{-1} \frac{B_L - B_C \text{ (imaginary part of Z)}}{R \text{ (real part of Z)}}$

3- $|I_C|$ and $|I_L|$ can exceed the source current |I| but $|I_C|$ - $|I_L|$ and $|I_R|$ cannot.

- How the circuit quantities change with frequency:

- * Figure (2) and the circuit phasor diagram helps in finding the circuit quantities change with voltage source frequency f changing.
- * As shown in figure (2), at low frequency f the difference between $\mathbf{X}_{\mathbf{C}}$ and $\mathbf{X}_{\mathbf{L}}$ is huge but with f increasing this difference starts to decrease so \mathbf{Z} will increase until f reaches $f\mathbf{r}$ where \mathbf{Z} becomes maximum, after f exceeds $f\mathbf{r}$, the difference between $\mathbf{X}_{\mathbf{C}}$ and $\mathbf{X}_{\mathbf{L}}$ increases with frequency increasing so \mathbf{Z} will decrease. In a concise way, the total impedance \mathbf{Z} will increase before f reach $f\mathbf{r}$ then decrease when f exceeds $f\mathbf{r}$ and it's value is maximum at resonance frequency and equals \mathbf{R} as shown in figure (6).

* Θ ranges from -90° to 90° (-90° < Θ < 90°). And since $|\Theta| = \tan^{-1} \frac{|B_C - B_L|}{R}$ and the \tan^{-1} function is increasing on the interval from -90° to 90°, the phase shift Θ (or the current angle $\stackrel{\checkmark}{\to}$ I) will decrease before f reach fr then increase when f exceeds fr and it's value is minimum at resonance frequency and equals **zero** as shown in figure (7).

- * Because **I** is inversely proportional to **Z**, the total current **I** will decrease before f reaches fr then increase when f exceeds fr and it's value is minimum at resonance frequency fr and equals V_s/R as shown in figure (8).
- * Figure (9) shows I_R , I_L and I_C frequency response curves.

- Figure (10) below shows a time domain representation for all the vectors shown on the phasor diagram for the case f < fr:

Figure (10) Parallel RLC Circuit Time Domain Representation